IJIREEICE

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2017

A Novel Back Tracking based Load Flow Solution for Distribution Systems

R.V.S. Lakshmi Kumari¹, G. V. Nagesh Kumar², S. Sivanagaraju³

Department of EEE, Dadi Institute of Engineering and Technology, Visakhapatnam, A.P., India¹

Department of EEE, Vignan Institute of Information Technology, Visakhapatnam, A.P., India²

Department of EEE, University College of Engineering, JNTU Kakinada, Kakinada, A.P., India³

Abstract: Power-flow or load-flow studies are very important in determining the overall operation of the existing system as well as for planning of future expansion following the constraints under steady state conditions. Load flow or power flow will give the systematic mathematical approach for obtaining the voltages at the buses, currents through branches and active and reactive power flow through different branches in the given system. In this paper, a new load flow method based on back tracking search algorithm, which in turn uses compensating factors. The system parameters are updated locally and as well as globally to obtain the solution without any iterative processes. The complete methodology is explained with supporting numerical and graphical results for Radial-33 node and Radial-69 node test systems.

Keywords: Distribution load flow, Back tracking search algorithm, Local compensating factor, Global compensating factor.

I. INTRODUCTION

Distribution load flow algorithms play vital role to estimate system performance under normal and severe conditions. The solution to this problem estimates voltage magnitude, voltage angle at the system nodes, active and reactive power flows in the branches of a given distribution system. The constraints in the load flow problem are in the form of minimum and maximum limits of voltages and reactive powers at the buses in the system.

Usually, static non-linear load flow equations are developed for solving the load flow problem. For this, there are iterative methods such as Gauss Seidel, NR methods are used for solving those equations. But the distribution systems are having high R/X ratio compared to the transmission system, due to this reason, the traditional iterative methods mentioned above may provide inaccurate results and may not converge. So many researchers have proposed different load flow methods for both radial and weakly meshed distribution systems.

Fan Zhang and Carol S. Cheng [1] developed modified Newton method for radial distribution systems without decreasing the size of the problem for achieving robust convergence and high efficiency. A. Blengini [2] presented a new open source algorithm based on the object oriented technique to develop load flow solutions in radial distribution systems consisting of all load models. Arturo Losi and Mario Russo [3] presented object oriented load flow based on Newton-Raphson technique by considering some approximations in the Jacobian matrix and derived some convergence conditions. Wei Wu et.al. [4, 5] developed a probabilistic load flow based on the approach using the combination of multiple integral method and cumulate method to reduce the computational burden for achieving satisfactory accuracy. M.H. Haque [6] presented a very simple method of load flow calculation for general distribution system for a meshed network having more than one feeding node.

From the careful review of the literature, it is noticed that, most of the literature is concentrated in finding the solution for the load flow problem using iterative processes. But, in this work, a new methodology based on compensating factors is developed to maximize the solution accuracy and to minimize the computational time by avoiding iterative process. In this process, two compensating factors namely, local compensating factor and global compensating factors are calculated and there by the system parameters are updated. The developed methodology is tested on Radial-33 node and Radial-69 node test systems with supporting numerical and graphical results.

II. EXISTING DISTRIBUTION LOAD FLOW

M.H. Haque [1] proposed a general load flow method for distribution systems. To exemplify this, a sample radial distribution system shown in Fig.1 is considered. Which consists of a branch connected between nodes k and m, having $\begin{pmatrix} k & k \end{pmatrix} = \begin{pmatrix} m & m \end{pmatrix}$

the resistance Ri and inductance Xi. Let the loads at node-k and node-m are $(P_L^k + jQ_L^k)$ and $(P_L^m + jQ_L^m)$ respectively.

IJIREEICE

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

ISO 3297:2007 Certified

Fig.1 Two node distribution system

The active (Pi) and reactive (Qi) power flow through the branch i near node k can be written as

$$P_{i} = P_{i}^{'} + R_{i} \frac{(p_{i}^{'})^{2} + (Q_{i}^{'})^{2}}{V_{m}^{2}}$$
(1)
$$Q_{i} = Q_{i}^{'} + X_{i} \frac{(p_{i}^{'})^{2} + (Q_{i}^{'})^{2}}{V_{m}^{2}}$$
(2)

Where, $P_{i}^{'}=P_{m}^{L}+P_{m}^{F}$ and $Q_{i}^{'}=Q_{m}^{L}+Q_{m}^{F}$

The superscripts L, F represents the load, flow respectively. The flow is the sum of power flow through all the downstream branches that are connected to nodee-m. Eqns (1) and (2) can be used in backward direction to find the power flow through all branches in the system.

Once the power flows are known, the voltage magnitude and phase angle at node m can be calculated from the following equation

$$V_{m} = \sqrt{V_{k}^{2} - 2(P_{i}^{1}R_{i} + Q_{i}^{'}X_{i}) + ((P_{i}^{'})^{2} + (Q_{i}^{'})^{2})(R_{i}^{2} + X_{i}^{2})/V_{k}^{2}}$$
(3)
$$\delta_{m} = \delta_{k} - \tan^{-1} \left(\frac{a_{1}}{a_{2}}\right)$$
(4)
Where, $a_{1} = \frac{\left(P'X_{i} - Q_{i}'R_{i}\right)}{V_{k}}$ and $a_{2} = V_{k} - \frac{\left(P'X_{i} + Q_{i}'R_{i}\right)}{V_{k}}$

III.PROPOSED BACK TRACKING LOAD FLOW METHOD

The proposed methodology starts the process from numbering of nodes and branches and followed by identification of end nodes. At first, for a given distribution system, first node is assumed to be the substation node. The remaining nodes of the main feeder are assigned with the sequential number. The laterals are numbered starting from the substation. The nodes of the lateral are numbered according to the increasing order followed by the main feeder.

Fig.2 Sample radial distribution system

For example, consider a radial distribution system shown in Fig.2. For this system, the substation node is numbered as node-1 and the remaining buses of the main feeder are numbered sequentially from node-2 to node-4. The laterals

IJIREEICE

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2017

connected to main feeder are numbered starting from substation node i.e. lateral connected to node-2 is lateral-1 and lateral connected to node-3 is lateral-2. The nodes of the lateral are numbered in increasing order followed by the main feeder i.e. node connected to later-1 is numbered as node-5 and the node connected to lateral-2 is numbered as node-6.

After this process, the end nodes are identified for the main feeder and as well as the laterals by following the highest node number. For example, for the system shown in Fig.2, the end bus for the main feeder is node-4, lateral-1 is node-5 and for lateral-2 is node-6.

Start the next process by assuming flat voltage profile at the end buses (\overline{V}_n) i.e. the voltage at the end nodes to be 1+j0 p.u. Next, current in the braches connected to end node/current at the end nodes (i.e. main feeder/laterals) is calculated as

$$\bar{I}_{m-n} = \bar{I}_n = \frac{P_n - jQ_n}{\left(\overline{V}_n\right)^*} \quad ; \quad n = \text{end nodes}$$
(5)

Where, Pn, Qn are the active and reactive loads connected to nth end node and node-m is the node connected before the end node. For this system, the branch and node current at end nodes (n=4, 5, 6) is calculated as $I_{3-4} = I_4$, $I_{3-6} = I_6$ and $I_{2-5} = I_5$.

The voltage magnitude at the mth node i.e. \overline{V}_m is computed based on the number of branches or/and loads connected to it. This can be expressed as

$$\overline{V}_{m} = \overline{V}_{n} + \overline{I}_{m-n} \times \overline{Z}_{m-n}$$
(6)

Where, \overline{Z}_{m-n} is impedance of the branch connected between nodes m and n. Here, \overline{V}_n is assumed to be (1+j0) p.u. For the considered system, the voltage at node-3 is calculated as

From node-4, $\overline{V}_3^4 = \overline{V}_4 + \overline{I}_{3-4} \times \overline{Z}_{3-4}$ Similarly, from node-6, $\overline{V}_3^6 = \overline{V}_6 + \overline{I}_{3-6} \times \overline{Z}_{3-6}$

After calculation of voltage at node-m, the local compensating factor (LCF) for maintaining similar voltage at node-m can be calculated as

$$LCF = \frac{V_{m} (\text{highest value})}{\overline{V}_{m} (\text{lowest value})}$$
(7)

For the considered system, the LCF is calculated as

$$LCF = \frac{\overline{V}_{3}^{6}}{\overline{V}_{3}^{4}} \left(by assuming \overline{V}_{3}^{6} > \overline{V}_{3}^{4} \right)$$

The current in the branch connected to end which yields lowest voltage is updated as

 $\bar{\mathbf{I}}_{\mathbf{m}-\mathbf{n}}^{\mathrm{new}} = \bar{\mathbf{I}}_{\mathbf{m}-\mathbf{n}}^{\mathrm{old}} \times \mathrm{LCF}$ (8)

For the considered system, current in the branch connected between nodes 3 and 4 is updated (since $V_3^6 > V_3^4$) as

$$\overline{I}_{3-4}^{\text{new}} = \overline{I}_{3-4}^{\text{old}} \times \text{LCF}$$

The above procedure is repeated for all the remaining nodes including substation node. For the considered system, voltage at nodes 2 and 1 is calculated.

In this process, calculated voltage (Vcal) at source node is different from the specified voltage (Vsp). For making unified calculate voltage with the specified voltage, a global compensating factor (GCF) is calculated as

$$GCF = \frac{\text{Specified Voltage}(V_{sp})}{\text{Calculated Voltage}(\overline{V}_{cal})}$$
(9)

Finally, using GCF, the voltage at remaining nodes other than substation node are updated as

DOI 10.17148/IJIREEICE.2017.5706

IJIREEICE

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2017

$$\overline{\mathbf{V}}_{m}^{new} = \overline{\mathbf{V}}_{m}^{old} \times \mathbf{GCF}$$
(10)

For the considered system, voltages at the remaining nodes are updated for m=2, 3, 4, 5 and 6. After calculation of new voltages, branch currents are calculated as

$$\bar{\mathbf{I}}_{\mathbf{m}-\mathbf{n}} = \frac{\left(\overline{\mathbf{V}}_{\mathbf{m}} - \overline{\mathbf{V}}_{\mathbf{n}}\right)}{\mathbf{Z}_{\mathbf{m}-\mathbf{n}}} \tag{11}$$

Similarly, active and reactive power losses in the branches can be calculated as

$$\mathbf{P}_{\mathbf{m}-\mathbf{n}} = \bar{\mathbf{I}}_{\mathbf{m}-\mathbf{n}}^2 \times \mathbf{R}_{\mathbf{m}-\mathbf{n}} \tag{12}$$

$$Q_{m-n} = \overline{I}_{m-n}^2 \times X_{m-n}$$
⁽¹³⁾

IV.ALGORITHM FOR LOAD FLOW SOLUTION

The following algorithm followed to solve load flow problem for both radial and meshed distribution systems.

Step 1: Read distribution system data i.e. line resistance and reactance data, active and reactive load data.

Step 2: Give number to the nodes as per the procedure explained in section-III.

Step 3: Identify end nodes for both the main feeder and laterals.

Step 4: Calculate node voltage using the Eqn (6) and calculate LCF using Eqn (7).

Step 5: Update the line current using Eqn (8).

Step 6: Calculate GCF and updated voltages using Eqns (9) and (10).

Step 7: Calculate line current and there by the losses using Eqns (11) to (13).

V. RESULTS AND ANALYSIS

To demonstrate the effectiveness of the proposed load flow methodology over the existing load flow methodology, two test systems namely Radial-33 node and Radial-69 are considered [7, 8].

The entire analysis is performed for the following four cases.

Case-1: Load flow problem is solved for the radial-33 and distribution system using the existing and proposed methodologies (explained in sections II and III).

Case-2: Load flow problem is solved for the radial- 69 node distribution system using the existing and proposed methodologies (explained in sections II and III).

A. Case-1

In this case, Radial-33 node distribution system with 32 branches, 3715 kW active load and 2300 kVAr reactive load is considered.

In case 1, the load flow problem is solved using existing and proposed load flow methodologies and obtained results are tabulated in Table.1. From this table, it is observed that, the voltage profile of the proposed methodology is very slightly higher when compared to the existing methodology. This is because of the updating system parameters locally and as well as globally without considering any simplifications. The variation of voltage magnitude is shown in Fig.5.

Node	Existing met	hod [8]	Proposed M	lethod
No	Voltage Magnitude (p.u.)	Voltage Angle (deg)	Voltage Magnitude (p.u.)	Voltage Angle (deg)
1	1	0	1.0000	0.0000
2	0.997	0.0148	0.9974	0.0124
3	0.983	0.0985	0.9851	0.0846
4	0.9755	0.1658	0.9787	0.1424
5	0.9682	0.2341	0.9724	0.2006
6	0.9498	0.1446	0.9568	0.1249
7	0.9463	-0.0872	0.9538	-0.0676
8	0.9415	-0.0539	0.9497	-0.0358
9	0.9352	-0.1312	0.9444	-0.0956

TABLE.1 LOAD FLOW RESULTS FOR CASE-1

IJIREEICE

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2017

10	0.9294	-0.198	0.9395	-0.1468
11	0.9286	-0.1914	0.9387	-0.1406
12	0.9271	-0.1812	0.9375	-0.1307
13	0.921	-0.2778	0.9323	-0.2063
14	0.9187	-0.3585	0.9304	-0.2717
15	0.9173	-0.3976	0.9292	-0.3031
16	0.916	-0.4223	0.9280	-0.3225
17	0.914	-0.5017	0.9263	-0.3869
18	0.9134	-0.512	0.9258	-0.3949
19	0.9479	0.0039	0.9969	0.0018
20	0.9453	-0.0636	0.9933	-0.0639
21	0.9339	-0.0831	0.9927	-0.0830
22	0.9257	-0.1036	0.9920	-0.1030
23	0.9222	0.0673	0.9817	0.0557
24	0.918	-0.022	0.9754	-0.0275
25	0.9171	-0.0662	0.9723	-0.0686
26	0.9168	0.1858	0.9551	0.1584
27	0.9794	0.2443	0.9530	0.2061
28	0.9727	0.3386	0.9432	0.2774
29	0.9694	0.4249	0.9362	0.3439
30	0.9965	0.5338	0.9332	0.4329
31	0.9929	0.4534	0.9297	0.3620
32	0.9922	0.4312	0.9289	0.3426
33	0.9916	0.4237	0.9286	0.3362

Similarly, the active and reactive power losses in each of the branch for the existing and proposed load flow methodologies are tabulated in Table.2 and the respective variation is shown in Fig.6

Propah No	Sonding Node	Dessiving Node	Existing	method [8]	Propose	ed method
Dranch No	Senaing Noue	Receiving Noue	Ploss (kW)	Qloss (kVAr)	Ploss (kW)	Qloss (kVAr)
1	1	2	12.1927	6.2154	12.0168	6.1257
2	2	3	51.5711	26.2668	50.7392	25.8430
3	3	4	19.7934	10.0806	19.3907	9.8755
4	4	5	18.5931	9.4697	18.2012	9.2702
5	5	6	38.0256	32.8256	37.2126	32.1237

TABLE.2 POWER LOSSES FOR CASE 1

IJIREEICE

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2017

6	6	7	1.9131	6.3238	1.8726	6.1900
7	7	8	4.8342	1.5976	4.7257	1.5617
8	8	9	4.1773	3.0012	4.0771	2.9292
9	9	10	3.5575	2.5216	3.4707	2.4601
10	10	11	0.5531	0.1829	0.5394	0.1783
11	11	12	0.8802	0.2911	0.8582	0.2838
12	12	13	2.6638	2.0958	2.5960	2.0425
13	13	14	0.7286	0.9590	0.7098	0.9344
14	14	15	0.3569	0.3176	0.3475	0.3093
15	15	16	0.2813	0.2054	0.2739	0.2000
16	16	17	0.2515	0.3358	0.2448	0.3268
17	17	18	0.0531	0.0416	0.0517	0.0405
18	2	19	0.1610	0.1536	0.1608	0.1535
19	19	20	0.8322	0.7498	0.8315	0.7492
20	20	21	0.1008	0.1177	0.1007	0.1176
21	21	22	0.0436	0.0577	0.0436	0.0576
22	3	23	3.1812	2.1737	3.1635	2.1616
23	23	24	5.1432	4.0613	5.1140	4.0382
24	24	25	1.2873	1.0073	1.2798	1.0014
25	6	26	2.5940	1.3213	2.5348	1.2911
26	26	27	3.3211	1.6909	3.2440	1.6517
27	27	28	11.2766	9.9424	11.0105	9.7078
28	28	29	7.8180	6.8108	7.6318	6.6487
29	29	30	3.8881	1.9805	3.7948	1.9329
30	30	31	1.5928	1.5742	1.5529	1.5347
31	31	32	0.2131	0.2484	0.2077	0.2421
32	32	33	0.0132	0.0205	0.0128	0.0199
r	Fotal Power Loss	(KW)	201.8925	134.6413	198.011	132.002

Fig.6 Variation of active power losses for case 1

Similarly, the consolidated results for this case are tabulated in Table.3. From this table, it is identified that, due to effectiveness of the proposed load flow methodology, the total active power losses are decreased when compared to the existing load flow methodology. Similarly, with the proposed method, the low voltage node is identified to be 18, which is farer from the source node. It is also observed that, due to reduced complexity of mathematics and minimized number of mathematical computations in the proposed method, computational time taken is reduced drastically when compared to existing load flow method.

IJIREEICE

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2017

TABLE.3 CONSOLIDATED LOAD FLOW RESULTS FOR CASE 1

Parameter	Existing radial load flow method [8]	Proposed load flow method
Total active power losses (kW)	201.8925	198.011
Total reactive power losses (kVAr)	134.6413	132.002
Minimum voltage node	18	18
Minimum voltage (p.u)	0.9134	0.9258
Computational time (sec)	0.17	0.06

B. Case-2

In this example, Radial -69 node distribution system with 68 branches, 3802 kW active load and 2695 kVAr reactive load is considered.

In case 2, the load flow problem is solved using existing and proposed load flow methodologies and obtained results are tabulated in Table.4. From this table, it is observed that, the voltage profile of the proposed methodology is very slightly higher when compared to the existing methodology. This is because of the updating system parameters locally and as well as globally without considering any simplifications. The variation of voltage magnitude is shown in Fig.7.

TABLE.4 LOAD FLOW RESULTS FOR CASE 2

Node	Existing method [8]		Proposed Method		
No	Voltage Magnitude (p.u.)	Voltage Angle (deg)	Voltage Magnitude (p.u.)	Voltage Angle (deg)	
1	1	0	1.0000	0.0000	
2	1	-0.0012	1.0000	-0.0011	
3	0.9999	-0.0024	0.9999	-0.0022	
4	0.9998	-0.0057	0.9999	-0.0053	
5	0.999	-0.0168	0.9991	-0.0163	
6	0.9901	0.0672	0.9914	0.0417	
7	0.9809	0.156	0.9834	0.1028	
8	0.9787	0.1774	0.9815	0.1175	
9	0.9776	0.1885	0.9805	0.1251	
10	0.9726	0.2775	0.9759	0.2022	
11	0.9715	0.2973	0.9748	0.2193	
12	0.9683	0.3531	0.9336	0.7822	
13	0.9654	0.4028	0.9310	0.8247	
14	0.9625	0.4528	0.9285	0.8675	
15	0.9597	0.5019	0.9259	0.9094	
16	0.9592	0.5111	0.9255	0.9173	
17	0.9583	0.5262	0.9247	0.9302	
18	0.9583	0.5264	0.9247	0.9303	
19	0.9578	0.5354	0.9243	0.9381	
20	0.9575	0.5413	0.9240	0.9432	
21	0.957	0.5507	0.9236	0.9513	
22	0.957	0.5509	0.9236	0.9514	
23	0.957	0.5523	0.9235	0.9526	
24	0.9568	0.5554	0.9234	0.9553	
25	0.9566	0.5587	0.9232	0.9581	
26	0.9566	0.5601	0.9232	0.9593	
27	0.9566	0.5605	0.9232	0.9597	
28	0.9999	-0.0026	0.9999	-0.0025	
29	0.9999	-0.0052	0.9999	-0.0051	
30	0.9997	-0.0031	0.9997	-0.0029	
31	0.9997	-0.0027	0.9997	-0.0026	
32	0.9996	-0.0008	0.9996	-0.0007	
33	0.9993	0.0036	0.9994	0.0037	
34	0.999	0.0094	0.9990	0.0096	

IJIREEICE

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2017

35	0.9989	0.0105	0.9990	0.0106
36	0.9999	-0.0029	0.9999	-0.0027
37	0.9997	-0.0093	0.9998	-0.0091
38	0.9996	-0.0117	0.9996	-0.0115
39	0.9995	-0.0124	0.9996	-0.0122
40	0.9995	-0.0125	0.9995	-0.0122
41	0.9988	-0.0235	0.9989	-0.0232
42	0.9986	-0.0282	0.9986	-0.0278
43	0.9985	-0.0288	0.9985	-0.0284
44	0.9985	-0.0289	0.9985	-0.0286
45	0.9984	-0.0307	0.9984	-0.0304
46	0.9984	-0.0307	0.9984	-0.0304
47	0.9998	-0.0075	0.9998	-0.0071
48	0.9985	-0.0528	0.9986	-0.0513
49	0.9947	-0.1935	0.9948	-0.1887
50	0.9942	-0.2135	0.9942	-0.2083
51	0.9786	0.1777	0.9814	0.1178
52	0.9786	0.1779	0.9814	0.1180
53	0.9748	0.2173	0.9781	0.1435
54	0.9716	0.2509	0.9754	0.1651
55	0.9671	0.2979	0.9717	0.1951
56	0.9628	0.3441	0.9680	0.2247
57	0.9407	0.7998	0.9491	0.5562
58	0.9298	1.0324	0.9398	0.7246
59	0.9256	1.1252	0.9362	0.7917
60	0.9206	1.2438	0.9320	0.8782
61	0.9133	1.3341	0.9258	0.9352
62	0.913	1.3377	0.9256	0.9374
63	0.9126	1.3425	0.9252	0.9405
64	0.9107	1.366	0.9236	0.9552
65	0.9102	1.3731	0.9232	0.9597
66	0.9714	0.2984	0.9364	0.7351
67	0.9714	0.2985	0.9364	0.7351
68	0.968	0.3594	0.9333	0.7879
69	0.968	0.3594	0.9333	0.7879

Similarly, the active and reactive power losses in each of the branch for the existing and proposed load flow methodologies are tabulated in Table.5 and the respective variation is shown in Fig.8

IJIREEICE

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2017

TABLE.5 POWER LOSSES FOR CASE 2

Branch	Sending	Receiving	Existing method [8]		Proposed Method	
No	Node	Node	Ploss (kW)	Qloss (kVAr)	Ploss (kW)	Qloss (kVAr)
1	1	2	0.0749	0.1798	0.0748	0.1795
2	2	3	0.0749	0.1798	0.0748	0.1795
3	3	4	0.1947	0.4674	0.1944	0.4665
4	4	5	1.9339	2.2653	1.9294	2.2599
5	5	6	28.2001	14.362	28.1338	14.3283
6	6	7	29.2986	14.9261	29.2297	14.8910
7	7	8	6.8844	3.5094	6.8685	3.5013
8	8	9	3.3698	1.7157	3.3626	1.7120
9	9	10	4.7772	1.579	5.0447	1.6674
10	10	11	1.0148	0.3355	1.0740	0.3551
11	11	12	2.1920	0.7244	2.3555	0.7784
12	12	13	1.2868	0.4248	1.3819	0.4562
13	13	14	1.2464	0.4059	1.3384	0.4359
14	14	15	1.2055	0.3983	1.2946	0.4278
15	15	16	0 2240	0.0741	0 2406	0.0795
16	16	17	0.3207	0.106	0.3444	0.1139
17	17	18	0.0026	0.0009	0.0028	0.0010
18	18	19	0.1043	0.0345	0.1120	0.0370
19	19	20	0.0671	0.022	0.0720	0.0236
20	20	20	0.1076	0.0356	0.1155	0.0250
20	20	21	0.0005	0.0002	0.0006	0.0002
21	21	22	0.0003	0.0002	0.0055	0.0002
22	22	23	0.0031	0.0017	0.0033	0.0018
23	23	24	0.0112	0.0037	0.0120	0.0040
24	24	25	0.0000	0.002	0.0003	0.0021
25	25	20	0.0023	0.0003	0.0027	0.0009
20	3	28	0.0003	0.0009	0.0003	0.0009
27	28	20	0.0005	0.0063	0.0005	0.0007
20	20	30	0.0020	0.0005	0.0020	0.0005
30	30	31	0.0038	0.0013	0.0010	0.0017
31	31	32	0.0010	0.0003	0.0010	0.0003
32	32	32	0.0031	0.0017	0.0031	0.0017
32	32	34	0.0123	0.0041	0.0123	0.0041
34	33	35	0.0104	0.0034	0.0005	0.0034
35	34	36	0.0003	0.0002	0.0003	0.0002
36	36	30	0.0014	0.0054	0.0014	0.0034
30	30	38	0.0173	0.0302	0.0173	0.0307
38	38	30	0.0175	0.0202	0.0175	0.0202
30	30	40	0.0000	0.0000	0.0002	0.0003
40	40	40	0.0002	0.0002	0.0002	0.0002
40	40	41	0.0407	0.0309	0.0201	0.0309
41	41	42	0.0201	0.0233	0.0201	0.0233
42	42	43	0.0027	0.0031	0.0027	0.0031
43	43	44	0.0003	0.0000	0.0003	0.0000
15	45	т.) Лб	0.0001	0.0077	0.0001	0.0077
45	+J /	40	0.0000	0.0575	0.0000	0.0000
40	4	-+/ /Q	0.0233	1 4265	0.0233	1 1/262
18	47	40	1 6334	3 9968	1 6333	3 0063
40	40	50	0.1150	0.2835	0.1150	0.2835
50		51	0.019	0.2033	0.017	0.2000
51	51	52	0.0010	0.0009	0.0017	0.0009
51	51	54	0.0000	U	0.0000	0.0000

IJIREEICE

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2017

52	52	53	5.7696	2.9378	5.6185	2.8609
53	53	54	6.6978	3.4116	6.5221	3.3221
54	54	55	9.1059	4.6362	8.8645	4.5134
55	55	56	8.7718	4.4685	8.5372	4.3490
56	56	57	49.5809	16.6423	48.2550	16.1973
57	57	58	24.4381	8.2011	23.7846	7.9818
58	58	59	9.4859	3.137	9.2322	3.0531
59	59	60	10.6485	3.2323	10.3610	3.1451
60	60	61	13.9966	7.1293	13.6187	6.9368
61	61	62	0.1118	0.0569	0.1087	0.0554
62	62	63	0.1346	0.0685	0.1309	0.0666
63	63	64	0.6597	0.336	0.6414	0.3267
64	64	65	0.0411	0.0209	0.0400	0.0204
65	11	66	0.0026	0.0008	0.0028	0.0009
66	66	67	0.0000	0	0.0000	0.0000
67	12	68	0.0233	0.0077	0.0251	0.0083
68	68	69	0.0000	0	0.0000	0.0000
Tota	al Power Loss	s (KW)	224.5867	101.9848	221.526	100.720

Fig.8 Variation of active power losses for case 2

Similarly, the consolidated results for this case are tabulated in Table.6. From this table, it is identified that, due to effectiveness of the proposed load flow methodology, the total active power losses are decreased when compared to the existing load flow methodology. Similarly, with the proposed method, the low voltage node is identified to be 65, which is farer from the source node. It is also observed that, due to reduced complexity of mathematics and minimized number of mathematical computations in the proposed method, computational time taken is reduced drastically when compared to existing load flow method.

Parameter	Existing radial load flow method [8]	Proposed load flow method
Total active power losses (kW)	224.5867	221.526
Total reactive power losses (kVAr)	101.9848	100.720
Minimum voltage node	0.9102	0.9232
Minimum voltage (p.u)	65	65
Computational time (sec)	0.27	0.12

TABLE.6 CONSOLIDATED LOAD FLOW RESULTS FOR CASE 2

IJIREEICE

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2017

VI. CONCLUSIONS

In this paper, a new methodology to solve load flow problem has been presented with necessary mathematical derivations. The back tracking radial load flow method has been used to solve load flow problem for radial distribution systems. From the analysis, it has been summarized that, updating system variables locally and as well as globally, the proposed methodology yields better results when compared to existing methodologies. The entire methodology has been tested on Radial-33 node and Radial-69 node test systems with supporting numerical and graphical results.

REFERENCES

- [1] Fan Zhang, Carol S. Cheng, "A Modified Newton Method for Radial Distribution System Power Flow Analysis", IEEE Transaction on Power Delivery, 1997, Vol. 12, No 1, pp.389-397.
- [2] A. Blengini, M. F. H. Carvalho, L. T. M. Mota, C. C. Pezzuto, "Object-Oriented Load Flow Modeling And Implementation For Distribution Power System", IEEE Latin America Transactions, 2017, Vol. 15, No 3, pp.439-444.
- [3] A. Arturo Losi, Mario Russo, "Object-Oriented Load Flow for Radial and Weakly Meshed Distribution Networks", IEEE Transactions on Power Systems, 2003, Vol. 18, No 4, pp.1265 -1274.
- [4] A Wei Wu, Keyou Wang, Guojie Li, Xiuchen Jiang, Zhiming Wang, "Probabilistic load flow calculation using cumulants and multiple integrals", IET Generation, Transmission & Distribution, 2016, Vol. 10, Issue 7, pp. 1703–1709.
- [5] Hamed Ahmadi, Member, José R. Marti, Alexan dra von Meier, "A Linear Power Flow Formulation for Three-Phase Distribution Systems", IEEE Transactions on Power Systems, DOI: 10.1109/TPWRS.2016.2533540.
- [6] M.H. Haque, "A general load flow method for distribution systems", Electric Power Systems Research, 2000, Vol.54, pp.47-54.
- [7] Paulo A. N. Garcia, Jose Luiz R. Pereira, Sandoval Carneiro, Vander M. da Costa, Nelson Martins, "Three-Phase Power Flow Calculations Using the Current Injection Method", IEEE Transactions on Power Systems, 2000, Vol. 15, No 2, pp.508-514.
- [8] G. W. Chang, S. Y. Chu, H. L. Wang, "An Improved Backward/Forward Sweep Load Flow Algorithm for Radial Distribution Systems", IEEE Transactions on Power Systems, 2007, Vol. 22, No 2, pp.882-884.